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Received 25 February 1977, in final form 25 March 1977 

Abstract. Asymptotic methods are used to solve the radial equation of a static scalar meson 
field in a Kerr-Newman background space. The solutions thus derived are used to obtain 
the form of the nuclear potential in the presence of a large mass, small charge, slowly 
rotating Kerr-Newman black hole, and to show that the meson field vanishes as the source 
approaches the event horizon. 

1. Introduction 

In a recent paper (Rowan and Stephenson 1976, to be referred to as I) the scalar meson 
field of a baryon in a Schwarzschild background space has been examined. Using a 
modified Liouville-Green technique, an approximate form for the nuclear potential 
was derived and shown to vanish as the baryon approached the event horizon. This was 
in agreement with an earlier paper by Teitelboim (1972), and also with the ‘no hair’ 
theorem, but differed from Teitelboim’s work by obtaining an explicit form for the 
potential. 

Similar work has been carried out for the corresponding electrostatic problem of a 
point charge in a Schwarzschild background space (see Cohen and Wald 1971, and 
Hanni and Ruffini 1973), and more recently in a Kerr background space with the charge 
located on the axis of symmetry (see Cohen et a1 1974). In this paper the nuclear 
potential of a baryon on the axis of symmetry of a Kerr-Newman black hole is derived 
using a similar approximation to that used in I .  For the approximation to be valid the 
black hole must have large mass, small charge, and be slowly rotating. 

2. Basic equations 

As in I we start with the generally covariant equation 

which corresponds to the massive scalar meson field of a baryon whose world line is 
x ’ ( A ) ,  p, being the inverse Compton wavelength of the .rr-meson, and g the coupling 
constant. 
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Consider a baryon situated in the exterior region of a Kerr-Newman black hole, 
with metric in Boyer-Lindquist coordinates given by 

A sin2 e 2 P2  
P P A d s 2 = T ( d t - a  sin20 d 4 ) 2 - T [ ( r 2 + a 2 ) d 4 - a  dt] --dr2-p2de2, 

where A = r 2 - 2 M r + a 2 + Q 2  and p 2 = r 2 + a 2  cos28. Assuming that the baryon is at 
rest on the axis of symmetry at r = b, 8 = 0, we treat the quasi-static in-fall (a series of 
static problems) of the baryon down the axis of rotation so that CP is independent of both 
4 and f. Thus combining (2.1) and (2.2) we have 

(A - a  sin2 e) ‘I2 

2.rrP [:(A$) +-& $(sin 6;) -p2p2]@ = g 6(r  -6)6(cos 8 - l), (2.3) 

where 

j a ( r - b ) d r = l  and  COS 8 - 1) sin 8 d e  d+ = 27.  

Writing 
m 

and substituting this into (2.3) reduces the problem to a radial equation 

(2.4) 

where the A, occurring in (2.5) are the eigenvalues for the prolate spheroidal harmonics 
given by 

1 d  - --(sin 0%) + ( A l  - azp2 cos2 e)si = o 
sin 8 de  

and the normalisation of the spheroidal harmonics has been taken as 
r2.rr r l  

(2.7) 

Putting Mx = r -r+ and 2Md = r+ - r -  into (2.5), where r+ and r- are the outer and inner 
horizons defined by 

and r- =M-[M2-(a2+Q2)J1/2 (2.8) 
2 1 /2  r+ = M +  [ M 2  - (U’ + Q )] 

leads to the equation 

(2.9) 
where N2 = p 2M2 and x b  = (b - r+)/M. 

3. Solution of the radial equation outside the source 

Equation (2.9) can be written in normal form by writing & ( x )  = Z , ( x ) [ x ( x  +2d)]-’” 
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and, for x # xh, becomes 

This equation does not appear to have exact solutions in terms of known functions. 
Consequently we generate approximate solutions in a manner similar to that in I. 
Firstly we change the independent variable x, in (3.1), to 5 by the transformation 
x = x(5) and transform the dependent variable using Gi(5) = (d5/dx)”2Z,(x) giving the 
equation 

where E‘=d(/dx. Then writing K 2 =  N2+hr ,  a 2 = A r / K 2  and p 2 =  N 2 / K 2 ,  (3.2) 
becomes 

Now choosing 

so that 

2 
a! + 2(x + d + 1)2 

( ’ 2  = p 
x(x +2d) x(x +2d)  

then (3.3) can be written as 

where 

g ( o = ( p - ~ - x 2 ( x + 2 d ) 2 ~ ) + Q .  5‘”’ 3tff2 d 2  1 1 

By substituting for (‘, 5”, and 6”’ in terms of x, (3.7) can be written in the form 

1 @’(d + 1)2+a!2]2d2 h ( x ) + - -  
4 t 2  4[p2(x +a‘+ 1 ) 2 + a 2 ] 3 ( ~  +2d)x’ 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where h ( x )  is a positive, bounded function of x. By examining (3.8), g(5 )  can be shown 
to be a slowly varying, bounded, function which is 0(1) as 6 + 0 and 0(1/l2) as 5 + 00. 

Furthermore the bound on the function h ( x )  contains a factor (x + 2 4 - l  which behaves 
like d-l  in the limit x + 0, and therefore the bound of h ( x )  diverges as d + 0. Using 
( 3 3 ,  the remaining terms in (3.8) can be shown to be bounded with respect to d for all 
x. Since we wish to neglect &)in comparison with K2, d cannot take small values. This 
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puts restrictions on a and Q, requiring that both are small compared with M, but 
provided this requirement is satisfied g(5) can be neglected in (3.6). The resulting 
equation has exact solutions so that the approximate solutions of (3.6) are therefore 
given by 

where lo and KO are the modified Bessel functions. Using the transformations relating 
Gl to Zl and Zl to RI, and (3.4), we have 

from which we may define the two solutions 

and 

(3.11) 

(3.12) 

4. Approximate form for the potential 

Using the solutions (3.11) and (3.12) an approximate solution to (2.9) can be obtained, 
as in I. Imposing continuity of Rl(x )  at x = x b  and integrating (2.9) across the 8-function 
gives 

Combining (4.1) with the physical requirement that the solution should be bounded as 
x + 0 and tend to zero as x + 00 we get 

Finally the full solution of (2.3) can be obtained by substituting (4.2) into (2.4) to give 
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which written explicitly for x b  ==x < 00, and putting t ( x b )  = t b ,  

2 1 / 4 *  
X sr(o)(K56) ’ / ’zo(K56)(K~)1/ ’~o(K~)s~(e)  

[ X b ( X b  + 2 ~ f ) ] ” ~ [ N ~ ( ~ b  + d  1 ) ’ + A : ] ’ / 4 [ ~ ( ~  +2d)]’ /“[N2(x + d  -I- 1 ) 2 + A / ]  

(4.4) 

The difference in appearance between this equation and (4.5) in I is due to the choice of 
normalisation for the spheroidal harmonics S,(O). It can be seen from (4.4) that 
provided the series is uniformly convergent (as proved to be the case for the equivalent 
equation in I) then @+ 0 as x b  + 0 and the dominant term in the fall-off is 

(b -r+)’/’(b -r-)”’ 
( b 2 + a 2 ) 1 / 2  ’ (as b + r+) .  (4.5) 

[x* (x* + 2 d ) y  
[ M ’ ( X b  + d + 1)’ + a 2 ] 1 / 2 x  

In the Schwarzschild limit (4.5) has the same form as that found in I. 

5. Discussion 

The above result, in accordance with the ‘no hair’ theorem, shows that if a baryon is 
slowly lowered into a Kerr-Newman black hole along the axis of symmetry, then the 
field due to the baryon, outside the black hole, vanishes as the baryon approaches the 
event horizon. It is interesting to note that if the cylindrical symmetry of this problem is 
not made use of at the outset then there are difficulties at  the horizon due to the singular 
nature of the coordinate system. Moreover these difficulties mean that the more 
general problem of a baryon located off the axis of symmetry cannot be handled by the 
method used above. To tackle this problem it is necessary to use a coordinate system 
which is well-behaved at the horizon (see, for example, Carter 1968). 
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